Website of D. Serikbayev EKTU
  • Font Size
    16px
    Website Colors
    Images

ПРОЕКТИРОВАНИЕ НЕЙРОННОЙ СЕТИ НА ПРИМЕРЕ РАСПОЗНАВАНИЯ РУКОПИСНЫХ ЦИФР

Нейронные сети

Authors

Name Affiliation
Шынар Тезекпаева ВКТУ им.Д.Серикбаева
Ольга Бакланова ВКТУ им.Д.Серикбаева

Published:

2023-03-31

Article language:

Russian

Keywords:

neural network, convolutional neural network, convolution, handwritten digit recognition, gradient descent method, MNIST database, Python

Abstract

This article is devoted to the implementation of an algorithm for recognizing handwritten digits using neural networks. Definition of a full-fledged neural network in Keras on a real example of handwritten digit recognition. Improving a full-fledged neural network in Keras by adding convolutional layers. An open database of MNIST handwritten digit images is considered as a test sample. The resulting model can be successfully used to solve problems of image classification and image recognition.

Тезекпаева, Ш., & Бакланова, О. (2023). ПРОЕКТИРОВАНИЕ НЕЙРОННОЙ СЕТИ НА ПРИМЕРЕ РАСПОЗНАВАНИЯ РУКОПИСНЫХ ЦИФР: Нейронные сети. Вестник ВКТУ, (1), 134–147. Retrieved from https://vestnik.ektu.kz/index.php/vestnik/article/view/296