Д. Серікбаев атындағы ВКТУ сайты
  • Қаріп өлшемі
    16px
    Сайттың түстері
    Суреттер

МАШИНАЛЫҚ ОҚЫТУДЫ ҚОЛДАНЫП ФОНЕМА (ДАУЫСТЫ ДЫБЫСТЫ) ТАНУ

Авторлар

Аты-жөні Жұмыс орны
NURBAPA MEKEBAYEV KAZAKH NATIONAL WOMEN'S TEACHER TRAINING UNIVERSITY

Жарияланды:

2025-12-22

Бөлім:

Ақпараттық және коммуникациялық технологиялар

Мақала тілі:

Қазақ тілі

Кілт сөздер:

phoneme, machine learning, vowel recognition, MFCC, ANN, CNN, RNN, speech recognition.

Аңдатпа

Қазіргі таңда сөйлеуді автоматты түрде тану (ASR) жүйелері жасанды интеллект пен машиналық оқытудың дамуына байланысты өзекті бағытқа айналды. Қазақ тіліндегі фонемаларды, әсіресе дауысты дыбыстарды тану саласының жеткілікті дамымауы және цифрлық ресурстардың аздығы зерттеу өзектілігін айқындайды. Зерттеу мақсаты – қазақ тіліндегі дауысты дыбыстарды жоғары дәлдікпен танитын машиналық оқыту үлгісін жасау. Бұл үшін сөйлеу сигналдарын алдын ала өңдеу, MFCC арқылы ерекшелік белгілерін алу және Random Forest, SVM, ANN алгоритмдерін салыстыру жүргізілді. Нәтижесінде ANN моделі ең жоғары дәлдік көрсетті. Алынған нәтижелер қазақ тіліндегі сөйлеуді тану жүйелерінің сапасын арттыруға және болашақта дауыс биометриясы мен дыбыстық интерфейстерде қолдануға мүмкіндік береді.

Article cover image
MEKEBAYEV, N. (2025). МАШИНАЛЫҚ ОҚЫТУДЫ ҚОЛДАНЫП ФОНЕМА (ДАУЫСТЫ ДЫБЫСТЫ) ТАНУ. ШҚТУ Хабаршысы, (4). Retrieved from https://vestnik.ektu.kz/index.php/vestnik/article/view/1377

Most read articles by the same author(s)